

Internet of Things (IoT) at UCF

S UNIVERSITY OF CENTRAL FLORIDA

UCF RET Site: Collaborative Multidisciplinary Engineering Design Experiences for Teachers

#2001340: Environmental Science

HEATHER BROUGH #2001340: ENVIRONMENTAL SCIENCE 6/10/2019

READ THIS FIRST

- Write all lessons and activities in present tense.
- Be aware of copyright issues for images. Images used must be your own or in the public domain. It is easiest to use your own images. If using a public domain image you must document the source. Please note that images obtained from a google search are NOT public domain images.
- These lessons will be published. All work should be your own. Be sure to cite references where appropriate and only use images in the public domain/creative commons or that you develop. All lessons will be run through <u>turnitin.com</u> prior to publication.
- Remember to do your 3R reflection include an updated copy of your lesson plan, developed assessment tools, presentation materials, to the evaluator. See implementation plan instructions developed by the evaluator. Send within a week after completing the lesson to <u>bonnie.swan@ucf.edu</u>

RET Site: IoT and E-Waste Lesson/Unit Plan

Subject Area(s): Science

Course(s): #2001340: Environmental Science

Grade Level: 9-12

Suggested Length of Lesson: 5-10 days

Lesson Summary: Today, we live in an IoT world. Students will explore the Internet of Things (IoT). As our need for technology grows, so does the accumulation of waste products and discarded high tech equipment. Where does it go? Landfills are already overflowing and are not equipped to dispose of discarded technologies that are embedded with toxic chemicals, hazardous energy sources, and additional plastics and leaching metals. As we crave for a need for smaller, faster, and more efficient electronic devices, we need to also account for the additional environmental and health impacts they will also bring into our world. In this lesson, students will explore the life cycle of a cellular phone. Students will explore what a cellular phone is made of, where those materials come from, how those materials are combined to produce the product, the hardware and software used to drive the product, the use of the product and then the final disposal of the product. Along the way, students will research and understand the environmental impacts that each stage of a cellular phone's life cycle brings with its development.

Prerequisite Knowledge: Students must have a basic understanding of the Internet, integrated technologies, and computer skills.

Materials/Technology Needed		Where this Fits/Lesson Dependency			
-	Collection of Typical E-Waste: cell phones, SMART watches,	-	Units whe	re this le	sson can be
	tablets, etc		incorporat	ed inclu	de, but is not
	Worksheet #1 – IoT Background Information		limited to:		
-	Worksheet #2 – E-Waste Home Survey		0	Unit 1	Ecology and
-	Worksheet #3 – Class Results Table			Ecosys	tems
-	Article #1 – "The Story of Stuff" at			•	The Environment
	https://storyofstuff.org/movies/story-of-				and
	electronics/				Sustainability
-	Article #2 – "Where does it come from?" –a material search of		0	Unit 4	Environmental
	cell phone components.			Quality	/
	https://www.compoundchem.com/2014/02/19/the-			•	Geology and
	chemical-elements-of-a-smartnhone/				Nonrenewable
	Article #3 – "IoT and E-Waste"				Mineral
	https://www.pwf.org/~/modia/DDEc/Eco			11	Resources
	<u>Intips.//www.inwi.org/_/ineuia/PDFS/Eco-</u>		0	Unit 5	Environmental
	<u>schools/KQED-ewaste.ashx</u>			Conce	ns
-	Article #4 – <u>https://bebusinessed.com/history/history-</u>			-	Human Deputation and
	cell-phones/				Population and
-	Article #5 – "What do we do next?"			-	Urbanization
	https://eekwi.org/teacher/ecycle.htm			-	Environmental
	Research Paper Rubric				Hazarus anu Human Haalth
	Pre-Test				
-	Post-Test			-	Hazardous
					Maste
					vvasle
					waste

Lesson Objective(s)/Learning Goal(s) (2-4)		-	HE.912.	.C.1.3
-	Students will be able to describe the concept of sustainability		0	Evaluate how
	and its significance to environmental science.			environment and
-	Students will be able to describe how mineral resources can			personal health are
	become economically depleted.			interrelated.
-	Students will be able to discuss the harmful effects of mineral		SC.912.	L.17.14
	mining.		0	Assess the need for
-	Students will be able to explain how mineral resources can be			adequate waste
	used more sustainably.			management
-	Students will be able to identify new materials that are			strategies.
	replacing some metals for common use.	-	SC.912.	L.17.16
-	Students will be able to explain how mineral resources can be		0	Discuss the large-scale
	used more sustainably.			environmental impacts
-	Students will be able to understand how chemicals in the			resulting from human
	environment can harm the human body.			activity, including
-	Students will be able to define and give examples of solid			waste spills, oil spills,
	waste.			runoff, greenhouse
-	Students will be able to explain what happened to solid waste			gases, ozone depletion,
	after it's disposed.			and surface and
-	Students will be able to define and give examples of hazardous			groundwater pollution.
	waste and understand why hazardous waste requires special		SC.912.	L.17.18
	handling.		0	Describe how human
-	Students how waste management, waste reduction, and			population size and
	integrated waste management differ in their approaches to			resource use relate to
	dealing with solid waste.			environmental quality.
-	Define the 4Rs approach to dealing with solid waste and		SC.912.	L.17.15
	identify ways individuals, industries, and communities can use		0	Discuss the effects of
	this approach to limit waste and pollution.			technology on
				environmental quality.
			HS-ESS3	3-4
			0	Evaluate or refine a
				technological solution
				that reduces impacts
				of human activities on
				natural systems.*
1				

Standards for Mathematical Practice	Instructional Strategies			
	 General Instructional Strategies 			
MAFS.K12.MP.2.1	 Group Collaboration 			
 Reason abstractly and quantitatively. 	 Cooperative Learning 			
MAFS.K12.MP.5.1	 Technology 			
 Use appropriate tools strategically. 	 Problem Solving 			
MAFS.K12.MP.6.1	 Small Group Instruction 			
 Attend to precision. 	 Whole Class Instruction 			
MAFS.K12.MP.7.1	 Modeling/Scaffold 			
 Look for and make use of structure. 	Instruction			
MP.2	 Checking for 			
 Reason abstractly and quantitatively. 	Understanding			
MAFS.K12.MP.1.1	 Providing Verbal 			
 Make sense of problems and persevere in solving 	Immediate Feedback			
them.	• Review of Material			
	ELL Strategies			
	• Paired Reading			
Evidence of Learning (Assessment Plan)	• Group Activity			
Pre-Test	 Preferred Seating "Hands on" Activity 			
 Laboratory Report 	O Hallus-Oll Activity			
 Research Paper 	ESE Strategies			
 Post-Test 				
	 Ordered Induity Preferred Secting 			
	Beneat of Instruction			
	\circ Clarification for			
	Understanding			
	 Other strategies listed in individual 			
	student's IEP/504			
Description of Lesson Activity/Experiences				
1. Take the Pre-test.				
2. Complete the Dissection of a SMART phone Laboratory Activ	vity.			
3. Discuss what it all means.				
4. Watch video "The Story of Stuff" at <u>https://storyofstuff</u> .	org/movies/story-of-electronics/			
5. Begin Lesson – Intro Activity	Begin Lesson – Intro Activity			
6. Research Activity – "Where does it come from?" –a material	Research Activity – "Where does it come from?" –a material search of cell phone components. View:			
https://www.compoundchem.com/2014/02/19/th	he-chemical-elements-of-a-			
smartphone/				
7. Discuss research results.				
8. Read Article on "IoT and E-Waste". Read and review:	Read Article on "IoT and E-Waste". Read and review:			
https://www.nwf.org/~/media/PDFs/Eco-schools/	https://www.nwf.org/~/media/PDFs/Eco-schools/KQED-ewaste.ashx			
9. Research Activity – "How is it produced?" –a manufacturing	. Research Activity – "How is it produced?" –a manufacturing virtual tour. Watch and review:			
https://www.youtube.com/watch?v=V8ZVHpgYAz	<u>25</u>			
10. Discuss research results. Read and Review: https://bebu	sinessed.com/history/history-cell-			
phones/				

11. Hand out IoT E-Waste Home Survey (students will complete as homework and return it next day).

- 12. Research Activity "What do we do next?" –a mission on reducing E-waste, recycle it, reuse it or landfill bound? Read and review: <u>https://eekwi.org/teacher/ecycle.htm</u>
- 13. Discuss research results.
- 14. Write a research paper summarizing the research completed during the week: the dissection of the SMART phone, the life cycle of a SMART phone, and future research questions.
- 15. Extension: Create an E-Waste Recycled Art Project. Read and review: <u>https://www.todaysoftmag.com/article/2582/reduce-reuse-recycle-an-</u> environmental-approach-to-your-iot-projects
- 16. Extension: Create an Awareness Poster or Brochure on the Life Cycle of a SMART phone or any topic covered during this research lesson.
- 17. Take the Post-test.

Recommended Assessment(s) and Steps

- Pre-test
- Formative Evaluation (answering verbal questions by teacher)
- Written follow-up questions
- Research Report
- Post-test

List of Materials/Resources Used

- Environmental Science Textbook
- Article: IoT and E-Waste
- Article: Recycled Material into Art

Engineering Connection (60-100 words/3 sentences)

Students will research and identify any problems in the life cycle of a cellular phone. Students will research every aspect of the process of creating to disposing of a cellular phone. Students will brainstorm and explore better engineering practices in the mining, developing, manufacturing, and disposing of cellular phones. Students will have a better understanding of the impact the electronic devices have on human health and the environment.

Engineering Category (choose one)

XXX	relating science and/or math concepts to engineering (primarily science & math with some				
	engineering)				
	engineering analysis or partial design (primarily engineering with some science/math)				
	engineering design process (full engineering design)				

Key Words

IoT, E-Waste, sustainability, renewable resource, nonrenewable resource, mineral, reserve, depletion time, nanotechnology, materials revolution, toxic chemical, carcinogen, mutagen, teratogen, solid waste, industrial waste, municipal solid waste (MSW), hazardous waste, waste management, integrated waste management, sanitary landfill, primary recycling, secondary recycling.

Introduction/Motivation (written as if talking to students)

Teacher prepared before students enter room: variety of cellular devices at each station.

Teacher: How many of you own a cellular phone? How many have more than one cellular phone? Student responses.

Teacher: Almost all of you own cellular phone and many of you have multiple phones. Now think about your household, how many of the people that you live with have a cellular phone and better yet, how many of those

people have more than one cellular phone? Interesting. Do you know that statistics show that individuals today have at least 7 electronic devices and by 2020 that number will be up to 13 electronic devices? Student responses.

Teacher: This lesson we are going to look at some key concepts in environmental science, including sustainability, mining, renewable and nonrenewable resources, nanotechnology, waste management and the 4Rs: reduce, reuse, replenish, and recycle. Welcome to the life cycle of a cell phone!

Lesson Closure (written as if talking to students)

Teacher: Well, we've neared the end of our life cycle of a cell phone, we've covered many key concepts along the way that we will explore further and more in-depth as those topics re-surface. For now, you have just experienced the life cycle of the cell phone. What were the key topics that we discussed?

Student will respond, writing in their interactive notebooks.

Teacher: Pair and share your list with your table and be prepared to share your results with the rest of the class.

Student will combine their lists and be prepared to share what they have learned with the rest of the class. Teacher: What concepts did you have in common with the rest of your table? Please share. (Go around the room, table by table comparing the results with the rest of the class).

Teacher: What was the most interesting fact that you learned from our lesson? What would you like to research more about? Do you still have any unanswered questions?

Students will respond, teacher continuing to prompt answers to be written in interactive notebooks. Teacher: Great job everyone, together we've learned what it takes to have that amazing device at your fingertips! This year we will continue to learn about the common everyday items and how they impact both human health and the environment. It's going to be a great year!

Lesson Background & Concepts for Teachers

This lesson is research based. The ability of having information at our fingertips has had an environmental impact that has not been addressed. Students do not fully understand how such a small device may have such a huge impact on our environment. Teachers, please read all articles and handouts with care. Please note all instructions. The lesson is focused on bringing an understanding of what impact electronics and their components have on our environment. From start to finish electronics are impacting our world.

Important Vocabulary

Term	Definition
Internet of Things (IoT)	The interconnection by the Internet of computing devices embedded in everyday objects, enabling them to send and receive messages
Electronic Water (E-Waste)	Discarded electronics or electronic devices.
Sustainability	Capacity of Earth's natural systems that support life (including human social systems) to maintain stability or to adapt to changing environmental conditions indefinitely.
Renewable resource	Resource that can be replenished rapidly (in hours to centuries) through natural processes as long as it is not used up faster than it is replaced.
Nonrenewable resource	Resources that exists in a fixed amount and takes millions to billions of years to form, so it will be used up more quickly than it can be replaced.
Mineral	Chemical element or inorganic compound that exists as a solid with a regularly repeating internal structure.
Reserve (mineral)	Portion of a mineral resource that is economically and technically feasible for mining.
Depletion time	Amount if time it takes to use a certain proportion (usually 80%) of the reserves of a mineral at a given rate of use.
Nanotechnology	Use of science and engineering to manipulate and create materials out of atoms and molecules at the ultra-small scale of less than 100 nanometers.
Materials revolution	Replacement of minerals with other materials for the use in industry and technology.

Toxic chemical	Element or compound that can cause temporary
	or permanent harm or death.
	Chemical, type of radiation, or virus that can
Carcinogen	cause or promote cancer.
	Taula a such as a shawing law forms of
Mutagan	I oxic agent such as a chemical or form of
Nutagen	of mutations in the DNA molecules found in colls
	of matations in the DNA molecules found in cells.
	Chemical that harms a fetus or embryo or causes
Teratogen	birth defects.
-	
	Any unwanted or discarded material people
Solid waste	produce that is not a liquid or a gas.
Industrial wasta	Solid waste produced by mines, farms, and
industrial waste	services
	Services.
	Combined solid wastes produced by households
Municipal solid waste (MSW)	and workplaces other than factories.
	Any discarded material or substance that
Hazardous waste	threatens human health or the environment.
	Managing wastes to limit their environmental
Waste management	harm without trying to reduce the amount of
waste management	waste produced.
	Variety of coordinated strategies for both waste
Integrated waste management	reduction and waste management designed to
	deal with solid wastes humans produce.
	Maste dispessed site on which waste is several in
Sanitary landfill	thin layers, compacted and covered with a fresh
	laver of clay or plastic foam each day
	Using materials again for the same purpose.
Primary recycling	
	Process in which waste materials are converted
Secondary recycling	into different products.

Troubleshooting Tips

If audio failure: provide transcripts of audio clips.

If computer failure: provide handouts of all articles.

If overhead project failure: provide handout of presentation, worksheets, and lab activity.

If you believe students will be unable to open discarded electronic devices: pre-open the devices and place pieces of the device in a sealed bag of the appropriate size.

Other Helpful Information

To prepare for the "Dissection of a Cell Phone" laboratory activity, it may be helpful to go to a thrift store to ask for a donation of the mobile phones to dissect. Also, if unable to get discarded mobile phones, may consider using any discarded electronic device and manipulate the activity to suit that type of device.

Attachments

- Cell Phone Dissection Lab
- Daily Report Template High School Version
- IoT and E-Waste Pre-Test
- IoT and E-Waste Post-Test
- Pre-Test/Post-Test Answer Key
- IoT and E-Waste Vocabulary Activity Key
- IoT and E-Waste Vocabulary Activity
- IoT and E-Waste Intro Activity
- IoT and E-Waste Home Survey
- Research Paper Rubric
- Research Paper Template High School Version
- Reviewing Literature High School Version
- Transcripts:
- o KQED-ewaste
- SoElectronics_Annotated_Script
- o The-Chemical-Elements-of-a-Smartphone

References

Waste Management System using IOT. (2018). International Journal of Recent Trends in Engineering and Research, 4(4), 220-229. doi:10.23883/ijrter.2018.4231.wp68d

New Life for an Old Cell Phone. (2001). PsycEXTRA Dataset. doi: 10.1037/e511182006-007

Kim, W., Shin, Y., & Seol, S. (2015). Smart phone assisted personal IoT service. doi:10.14257/astl.2015.110.13

- Elie, A., & Ferrario, J. (n.d.). Electronic components in cell phone handsets: Thermal simulations and evaluation of modeling assumptions. 53rd Electronic Components and Technology Conference, 2003. Proceedings.doi:10.1109/ectc.2003.1216316
- Anuj, M. (2013). A Study to Assess Economic Burden and Practice of Cell Phone Disposal among Medical Students. JOURNAL of CLINICAL AND DIAGNOSTIC RESEARCH. doi:10.7860/jcdr/2013/5265.2875

What is Nanotechnology? (2002). Nanotechnology, 14(1). doi:10.1088/0957-4484/14/1/001

- Shovic, J. C. (2016). Introduction to IOT. Raspberry Pi IoT Projects, 1-8. doi: 10.1007/978-1-4842-1377-3_1
- Kao, Nawata, & Huang. (2019). Systemic Functions Evaluation based Technological Innovation
 System for the Sustainability of IoT in the Manufacturing Industry. Sustainability, 11(8),
 2342. doi: 10.3390/su11082342
- Cho, J. (2019). University of Central Florida. RET Site: Collaborative Multidisciplinary Engineering Design Experience for Teachers (CoMET) Teacher Handbook. Orlando, FL: UCF
- Bersa, M., González-González, C., & Belén Armas–Torres, Mª. (2019)."<u>Coding as a playground:</u> <u>Promoting positive learning experiences in childhood classrooms</u>". *Computers & education* Volume: 138 Issue 1 (2019) ISSN: 0360-1315 Online ISSN: 1873-782X
- Yan, W. (2017). "Testing the Waters: From Moringa Seeds to Fruit Peels, Researchers Are Seeking Out New Ways to Clean up the World's Drinking Water". *IEEE Pulse*, vol. 8, no. 6, pp. 23-28, Nov.-Dec. 2017.

- Bhatnagar, A., Sillanpää, M., & Witek-Krowiak, A. (2015). "Agricultural waste peels as versatile biomass for water purification A review". Chemical Engineering Journal, Volume 270, 15 June 2015, Pages 244-271, ISSN 1385-8947, <u>https://doi.org/10.1016/j.cej.2015.01.135</u>. (http://www.sciencedirect.com/science/article/pii/S1385894715001746)
- Renato Grillo, R., de Jesus, & M., Fraceto, L. (2018). "Environmental Impact of Nanotechnology: Analyzing the Present for Building the Future." Frontiers in Environmental Science, [s. l.], 2018. Disponível em: https://search.ebscohost.com/login.aspx?direct=true&db=edsdoj&AN=edsdoj.6d4060177 7f47d386b843678b688ed3&site=eds-live&scope=site>. Acesso em: 21 jun. 2019.
- Hossain, A., Canning, J., Ast, S., Rutledge, P., & Yen, Ten Li, & Jamalipour, A. (2015). "Lab-in-a-Phone: Smartphone-Based Portable Fluorometer for pH Measurements of Environmental Water." IEEE Sensors Journal, vol. 15, no. 9, pp. 5095-5102, Sept. 2015. doi: 10.1109/JSEN.2014.2361651
- Velez Rueda, A.J., Benı´tez, G., Marchetti, J., Anahı´ Hasenahuer, M., Silvina Fornasari, M., Palopoli, N., & Paris, G. (2019). Bioinformatics calls the school: Use of smartphones to introduce Python for bioinformatics in high schools". PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006473
- Al-Fuqaha, A., Guizani, M., & Mohammadi, M., (2015). "Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications". IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 4

Acknowledgements

Authors

Heather Brough

Supporting Program

COMET RET Program, College of Engineering and Computer Science, University of Central Florida. This content was developed under National Science Foundation grant #1611019.

Contact information

Heather Brough, broughh@lake.k12.fl.us