

Internet of Things (IoT) at UCF

S UNIVERSITY OF CENTRAL FLORIDA

UCF RET Site: Collaborative Multidisciplinary Engineering Design Experiences for Teachers

> Taylor Presha Biology 07 January 2020

RET Site: Enhancing the world with carbon nanotubes				
Subject Area(s): Science				
Course(s): Biology				
Grade Level: 10-12				
Suggested Length of Lesson: 3-4 days				
Lesson Summary: Students will learn first how nanotechnology can be woven into				
biology. Students will then learn about carbon nanotubes and their applications in				
engineering. Students will next investigate how carbon nanotubes relate to				
biotechnology and then construct their own engineering designs.				
Prerequisite Knowledge: This benchmark requires prerequisite knowledge of SC.7.L.16.4				
(Recognize and explore the impact of biotechnology (cloning, genetic engineering,				
artificial selection) on the individual, society and the environment), SC.8.E.5.10 (Assess				
how technology is essential to science for such purposes as access to outer space and				
other remote locations, sample collection, measurement, data collection and storage,				
computation, and communication of information), SC.8.N.4.1 (Explain that science is				
one of the processes that can be used to	inform decision making at the community,			
state, national, and international levels), c	and SC.8.N.4.2 (Explain how political, social,			
and economic concerns can affect science, and vice versa)				
Materials/Technology Needed	Where this Fits			
 Laptop 	Quarter 3 Unit: "How does DNA work?"			
 Modeling Clay 				
 Sketch paper 				
 Colored pencils 				
Learning Goals	Standard Addressed			
 Students will be able to connect the 	Standards: <u>SC.912.L.16.10 Evaluate the</u>			
use of carbon nanotubes to the field	impact of biotechnology on the			
of biotechnology.	individual, society and the environment,			
 Students will be able to use modeling 	including medical and ethical issues.			
clay to design a product that can be				
wrapped in carbon nanotubes				
Standards for Mathematical Practice	Instructional Strategies			
MAFS.912.N-Q.1.3: Choose a level of	 The Question Is 			
accuracy appropriate to limitations	 Determine a question related 			
on measurement when reporting	to the current unit of study and			
ouroratition				

Evidence of Learning (Assessment Plan)	write only the answer to that
 Biotechnology and Carbon 	question on the board.
nanotubes Introduction	 Ask students to write questions
 Article summary about carbon 	that could match the answer
nanotechnology and connecting	on sticky notes. Allow students
it to biotechnology.	to refer to notes or handouts, if
 Sketch Design of product 	necessary.
 Model clay design of sketch 	 Have students stick their
	questions to the board,
	surrounding the answer.
	Alternatively, students could
	write the answer in their
	interactive notebooks and list
	questions under or around it.
	 allowing a teacher to see what
	the students understand about
	a given topic.
	Think-Pair-Share
	 students are given time to share
	their ideas with their table
	partners
	 Relationship Building
	 teacher builds positive
	relationships with students to
	encourage learning in the
	classroom

Description of Lesson Activity/Experiences Day 1: Biotechnology and Carbon nanotubes

- 1. Research the following question: "What are Carbon Nanotubes?"
 - a. Locate a scientific article related to the above question.
 - b. A place to start would be: https://www.sciencedaily.com/
 - i. Wikipedia is not a valid source
- 2. Write a 1 page reflection about the article
 - a. Summary about the article
 - b. Describe how the information you found relates to the topic 'Biotechnology'
 - c. The page should be in 12 pt, Times New Roman Font, Double Spaced (select format at top of page--> line spacing--> double)

Day 2: Sketch of Design

- 1. In your table groups, you will sketch out a design of a product that can be enhanced with Carbon nanotube technology.
 - a. the design should include an explanation of how carbon nanotubes can enhance their product

	b. a description of the product use will all be included	
Day	3: Modeling	
1.	Students will use modeling clay to sculpt out their design	
Day	4: Present	
1.	Students will present their designs	
	a, including why their design is the best	
2	Teacher will determine which design is the best based on the presentations	
۷.		
Reco	ommended Assessment(s) and Steps	
	Research article detailing Carbon nanotubes	
	Detailed sketch of the application of Carbon Nanotubes to enhance any	
	product	
	3D clay model of sketch design	
List of	Materials/Resources Used	
	Laptop	
-	Modeling Clay	
	Sketch paper	
Engin	eering Connection (60-100 words/3 sentences)	
inis a	ctivity directly connects the students with the practical application of	
	Diechnology principles. Students are able to learn about Caron nanotubes and	
no	w iney relate to different biotechnology devices. The students will work on	
ite	aming about the many applications of carbon handfubes and now everyday	
Engin	nis can be enhanced with carbon hanolobes.	
Engin	relating science and (or math concents to engineering (primarily science ?	
	math with some engineering)	
	engineering analysis or partial design (primarily engineering with some	
	science/math)	
	engineering design process (full engineering design)	
Kov	Nords	
Ney 1	Carbon nanotube	
Biotechnology		
 Nanotechnology 		
Introduction/Motivation (written as if talking to students)		
"This	unit we will work on a STEM project that connects 'carbon nanotubes' to	

biotechnology. You will work on a STEM project that connects "Carbon handlubes" to biotechnology. You will work in teams of 3-4 to design and construct a product that carbon nanotubes can be applied to. Byt the end of the unit we will see which group constructed the best design. The goal is for you to gain exposure to another area of biotechnology, outside the world of DNA. As well as, introduce you to an advanced engineering concept. "

Lesson Closure (written as if talking to students)

"Now that we have learned a little bit about carbon nanotubes, what are some of your biggest takeaways from this lab? What other projects could carbon nanotubes be used for? How can we promote future investment into this technology?"

Lesson Background & Concepts for Teachers Biotechnology Carbon nanotube

Important Vocabulary

Term	Definition
Biomedical	set of applied sciences applying portions of natural science or formal science, to knowledge, interventions, or technology that are of use in the healthcare or public health
Biotechnology	the exploitation of biological processes for industrial and other purposes. The types of biotechnology include: genetically modified plants and animals, cell therapies, nanotechnology, and medical.
Carbon Nanotube	tubes made of carbon with diameters typically measured in nanometers
Cloning	replicate an identical copy of
DNA ligase	an enzyme that facilitates the joining of DNA strands
Gel electrophoresis	used to separate mixtures of DNA, RNA, or proteins of different molecular sizes. Molecules pushed through a gel with pores using an electrical field.
Gene therapy	an experimental technique that uses genes to treat or prevent disease
Genetic engineering	deliberate modification of the characteristics of an organism by manipulating its genetic material. Applications include scientific research, agriculture and technology
Genome	the haploid set of chromosomes in a gamete or microorganism, or in each cell of a multicellular organism
Plasmid	a genetic structure in a cell that can replicate independently of the chromosomes, typically a small circular DNA strand in the cytoplasm of a bacterium or protozoan.
Polymerase chain reaction	used in molecular biology to make copies of a specific DNA segment. The three main stages of PCR are denaturation, annealing, and primer extension.
Recombinant DNA	DNA that has been formed artificially by combining constituents from different organisms

Restriction enzyme	an enzyme produced chiefly by certain bacteria, having the property of cleaving DNA molecules at or near a specific sequence of bases.
Nanotechnology	manipulation of matter on an atomic, molecular, and supramolecular scale
Transgenic organism	Genes of one species can be modified, or genes can be transplanted from one species to another.
Transformation	the genetic alteration of a cell by introduction of extraneous DNA, especially by a plasmid

Troubleshooting Tips

- Teacher will guide students in their research (instruction on what sites to use)
- Ensure students construct their models correctly

Other Helpful Information

• Encourage students to stretch their research skills as this topic may be difficult for them

Attachments

1. Biotechnology and Carbon nanotubes Introduction

References

Florida State University. (2019). SC.912.L.16.10. Retrieved from: http://www.cpalms.org/Public/PreviewStandard/Preview/2021

Rice University. (2018). Carbon Nanotube fibers in a jiffy. Retrieved from: <u>https://engineering.rice.edu/quick-fibers-carbon-nanotubes</u>

Cambridge University. (2013). Carbon Nanotubes. Retrieved from: <u>https://youtu.be/UdHfalyPVhA</u>

Authors

Taylor Presha

Supporting Program

COMET RET Program, College of Engineering and Computer Science, University of Central Florida. This content was developed under National Science Foundation grant #1611019.

Contact information

Taylor Presha, taylorreyes32@gmail.com