

S UNIVERSITY OF CENTRAL FLORIDA

UCF RET Site: Collaborative Multidisciplinary Engineering Design Experiences for Teachers

2003350: CHEMISTRY I HONORS

Walter Jean Vertus 2003350: CHEMISTRY I HONORS 7/14/2018

Course(s): <i>2003350 Chemistry I Honors; 2003340 Chemistry</i> Grade Level: <i>10th & 11th</i> Suggested Length of Lesson: 1 block period (90-100 mins) or two regular (45-50 mins) class days		
 Materials/Technology Needed Each group of students (2-3 students per group) should have the following materials: 6 (250 mL or less) clear glass beakers 1 (100 mL) graduated cylinder 1 (10 mL) graduated cylinder or volumetric pipette A piece of solid green or blue construction paper (letter size) One Android® internet capable phone with the "Color Grab" color sensor app installed or similar app can determine the RGB color code of an image. 500-600 mL of a clear (brown, red or yellow) juice product (e.g., Cranberry Juice, Sweet Tea, Apple Juice, etc.). A computer or phone installed graphing tool (e.g. Excel™, LoggerPro™, Desmos® app for Android) 	 Where this Fits Units where this lesson can be incorporated include, but is not limited to: Measurements and Data Processing The Scientific Method Engineering Design Process The Electromagnetic Spectrum Electrons and the Atom Spectroscopic Techniques Analytical Chemistry Food Chemistry 	
 Lesson Objective(s)/Learning Goal(s) The student will construct a sample holder using origami. The student will prepare standard solutions of varying concentrations for a calibration curve. The student will construct a calibration curve to determine the relationship between color intensity and % juice. The student will determine the % juice in an unknown diluted sample of juice. The student will calculate the sugar content in the diluted sample. 	Standard(s)/Benchmark(s) Addressed Florida NGSS Standards: Chemistry SC.912.P.10.9 Describe the quantization of energy at the atomic level. Physics SC. 912.P.10.18 Explore the theory of electromagnetism by comparing and contrasting the different parts of the electromagnetic spectrum in terms of wavelength, frequency, and energy, and relate them to phenomena and applications. Mational NGSS: HS-PS4-5. Communicate technical information about how some technological devices use the principles of wave behavior and wave interaction with matter to transmit and capture information and energy.*	

Standards for Mathematical Practice	Instructional Strategies	
Florida NGSS Standards:	 General Instructional Strategies 	
• MAFS.912.F-IF.2.4 For a function	 Collaborative Groups 	
that models a relationship	 Cooperative Learning 	
between two quantities, interpret	 Use of Technology 	
key features of graphs	 Problem Solving 	
 MAFS.912.G-GMD.1.2 Apply 	 Small Group Instruction 	
concepts of density based on	 Whole Class Instruction 	
area and volume in modeling	 Modeling/Scaffold Instruction 	
situations	 Incremental Pacing of Instruction 	
• MAFS.912.N-Q.1.3 Choose a level	 Checking for Understanding 	
of accuracy appropriate to	 Providing Verbal Immediate Feedback 	
limitations on measurement	 Providing Written Feedback 	
when reporting quantities.	 Review of Material 	
 MAFS.912.S-ID.2.6 Represent 	 ELL Strategies 	
data on two quantitative	 Paired Reading 	
variables on a scatter plot	 Group Activity 	
Evidence of Learning (Assessment Plan)	 Preferred Seating 	
 Pre-test on electromagnetic spectrum and 	 "Hands-on" Activity 	
interpreting graphs	• Dictionary for Reference	
 Formative evaluation of students working 	 ESE Strategies 	
collaboratively	Guided Inquiry Breferred Section	
 Formative evaluation of students working 	 Preferred Seating Repeat of Instruction 	
successfully (sensors are working)Formative evaluation of individual students by	 Clarification for Understanding 	
asking random students	 Other strategies listed in individual 	
 Assessment of their % error in the lab activity 	student's IEP/504	
 Post-test on electromagnetic spectrum and 		
interpreting graphs		
Description of Lesson Activity/Experiences		
1. Take the Pre-test.		
2. Construction of the sample holder following	g the instruction provided by Do It Yourself on youtube.com:	
https://www.youtube.com/watch?v=caDw	be0216g	
3. Download the "Color Grab" app for android	d or similar app for iOS.	
4. Get familiar with the app by playing around with it.		
 Prepare the diluted standard solutions for the calibration curve. Each group decides how many and what % of juice each standard solution will contain (3-5 is suggested). 		
 Place each standard in the sample holder and use the app to grab the color (the green code in the RGB 		
code).		
7. Collect data (be aware of repetition of expe	eriments removal of outliers).	

- 8. Graph data (each group decides how best to graph and present the data).
- 9. Provide the best line equation and R² value for the data.
- 10. Get a sample of the prepared unknown solution and test it.
- 11. Calculate the % error in the sample after getting the actual value from the teacher.
- 12. Answer the follow up questions.
- 13. Write a lab report summarizing your experiment.
- 14. Take the Post-test.

Recommended Assessment(s) and Steps

- Pre-test
- Formative Evaluation (answering verbal questions by teacher)
- Written follow-p questions
- Lab Report
- Post-test

List of Materials/Resources Used

- "Color Grab" App for Android
- Youtube video: <u>https://www.youtube.com/watch?v=caDwbe02l6g</u>

Important Vocabulary

Term	Definition
Environmental Sensor	A device that detects a property of surroundings
Color Sensor	A device that detect the color of a substance.
Atomic orbital	Region in space where an electron can be found.
Electromagnetic Spectrum(EMS)	Various forms of light list in order of increasing/decreasing energy.
Electron Configuration	A notation that tells you where the electrons are located in an atom.
Electron dot structure	A notation that depicts the valence electrons in an atom.
Energy	The ability to do work (the product of frequency and Planck's constant).
Energy sublevel	The shape of the region where the electron is located.
Frequency	How many waves per second passing through a particular point (Hz or 1/s).
Ground state	The initial energy level of an electron.
Excited State	The resulting energy level of an electron after absorption.
Light	Electromagnetic radiation.
Photon	Small particle without mass that makes up light.
Principal energy level	The main level where an electron is located.
Wavelength	The distance from crest to crest of a wave, measure in nanometers, smaller wavelength means higher frequency
Radiation	Light of any energy (but usually high energy)

Colorimetry	Measuring properties of solutions using the visible region of the EMS.
Spectroscopy	Measuring properties of solutions using any region of the EMS.

Troubleshooting Tips

If the calibration curve is not fitting a linear regression, try using the white light balancing feature on the "Color Grab" app.

Also be sure students are "grabbing" the color intensity of the solution at the same height, resting the phone on the sample holder with stabilize the app and ensure the color is grabbed at the same height. Only one phone should be used to construct the curve and determine the unknown solution.

Other Helpful Information

Blue construction paper can be used instead of green as the color has a higher energy than the red colored juice. If using a different colored juice as the analyte. Be sure the color of the sample holder has a higher energy than the color of the juice. Remember ROYGBIV.

Students may compare their results to that of a traditional colorimeter or spectrophotometer and among each other.

Attachments

- PowerPoint on Colorimetry (spectroscopy)
- Pre-test
- Post-test (same as pre-test)
- Pre-test answer key
- Post-test answer key (same as pre-test)
- Follow up questions
- Follow up questions answer key
- Lab Report format (template)

References

- Arnold, B. (2018, March 15). The Working Principle of Colorimeters. Retrieved July 13, 2018, from https://www.azosensors.com/article.aspx?ArticleID=324
- Hossain, A., Canning, J., Ast, S., Rutledge, P. J., Yen, T. L., & Jamalipour, A. (2015). Lab-in-a-Phone: Smartphone-Based Portable Fluorometer for pH Measurements of Environmental Water. *IEEE Sensors Journal*, *15*(9), 5095-5102. doi:10.1109/jsen.2014.2361651
- Oestreich, J., Tolley, W., & Rice, D. (1995). The development of a color sensor system to measure mineral compositions. *Minerals Engineering*, 8(1-2), 31-39. doi:10.1016/0892-6875(94)00100-q

Raja, A. S., & Sankaranarayanan, K. (2007). Performance analysis of a Colorimeter designed with RGB color sensor. *2007 International Conference on Intelligent and Advanced Systems*. doi:10.1109/icias.2007.4658396

- RGB Color Codes Chart. (n.d.). Retrieved July 13, 2018, from
 - https://www.rapidtables.com/web/color/RGB_Color.html

Acknowledgements

Authors

Walter Jean-Vertus

Supporting Program

RET Site: COMET Program, College of Engineering and Computer Science, University of Central Florida. This content was developed under National Science Foundation grant #EEC-1611019.

Contact information

Walter Jean-Vertus Walter.jeanvertus@ocps.net