

<u>Summary</u>	
Over the course of six weeks, UCF in support to STEM initiated a second cohort of 11 science and math teach region with an explorative background in IoT and quali- and technology. Through a series of lectures and lab p as guideline for exploration of each research project m timeline:	I education in K-12 classrooms lers intended to equip educators of the ty experiences in engineering design ractices the following schedule serve odule within a one to two-weeks
Weeks 1 and 2: Sensor Device Module.	
Option 1 —Working principles: Design and Fabricatio	n of Environmental Sensors.
 Material Synthesis 	
 Photomask design 	
 Cleanroom Microfabrication 	Analytics
 Device packaging 	Data Storage
Weeks 3 and 4: Interface and Testing Module	Remote
Working principles: Analog and digital circuit basics	
 Number system & Boolean Algebra 	and/R on Der
 Introduction to C-programming language. 	
Week 5: Software and Networking Module.	
Working principles: System Software and Networking	Gateway Internet Network
 Introduction to Java programming language. 	Image Source: http://www.winmagpro.nl/content/dit-is-het-internet-of-things infographic
 Basics of computer networking—Layered model 	injogrupnic
 Raspberry Pi Java programming. 	
Week 6: Mobile Programming	
Working principles: Mobile operating systems	
Introduction to Android	
 Writing a Web-based Android program 	
Research Activ	<u>ities</u>
Much like an ecosystem, IoT is an environment or network connected. The following research activities were comp assistance of UCF faculty professors and PhD residen computer engineering.	ork where everything and everyone oleted under the supervision and at students in material, electrical and
Bottom-Up IoT Architectural Design: Design and Fabric	cation of Environmental Sensors.
Photolithography Fabrication Method: Silicon Circuit	Chip
Procedures:	
2. Draft sight	
3. Plating with metal (ex: Titanium)	
4. Cleaning with acetone and nitrogen air 5. Spin-coating with photoresist	X
6. Soft Bake	
7 Apply Mask	

- ι. πρριγ Ινιαδκ
- 8. UV exposure
- 9. Hard baking
- 10. Developing with base
- 11. Etching (with acid)

 Screen Printing Fabrication Method: Bi/Chitosan Electrochemical sensor Procedures:

- 1.Silver paste printing
- 2. Dry time
- 3. Carbon molding
- 4. Drying time
- 5. UV pasting
- 6. Curing under UV light
- 7. Aluminum cleaning 8. Edging and cutting
- Microsensor Fabrication and Testing Procedures:
 - 1. Stripping off Cu2+ wire coating
 - 2. Connecting Cu/Ti wires using Ag paste (solidify with handheld dryer)
 - 3. Casting wire with capillary glass
 - 4. Pulling Ti wire into needle using a micropipette puller (or hand pulling technique)
 - 5. Measure needle length under microscope
 - 6. Etch Ti with Cyanic acid if needed

Research Experience for Science and Math Teachers in Internet of Things (IoT) A BioMath Approach to Introduce Basic Programming

Fabiola Guillaume

Orange County Public Schools—Edgewater High School, Orlando, FL 32804

Lesson Plan

The following lesson activities have been developed from content materials in interface modules 2 and 3. Basic programming concepts will serve as framework for the mental model of DNA processing genetic information to synthesize proteins. A goal of this research lesson is to provide a concise language of science and programming to describe conceptual understanding that may unfamiliar to students.

Day 1—Lesson Plan: *DNA is Binary!*

Lesson Activity: Writing Binary Numbers. (20 minutes) Students will be able to represent DNA data using binary and hexadecimal numeration systems. Building from prior knowledge that while representing quantities, numbers are not material things, students will assign values to DNA bases and practice conversion between the two different numeration systems. The two-bit identifiers used to represent the four nucleotides is drawn from the same principle employed by computer engineers using a twodigit numeration system to represent the condition of an electrical switch (0 = "off"; 1 = "on").

DNA Bases	Radix-10	Radix-2
Т	0	00
С	1	01
А	2	10
G	3	11

DNA Nucleotide Bases Image Source: Miller & Levine (2010)

Day 2—Lesson Plan: Basics of Computer Programming Languages (C and Java *Programming*)

This lesson will provide students with key understanding in program language structure while reinforcing taught biology concepts of DNA and RNA base pairing rules, replication and protein synthesis. Students will practice coding using free online websites.

base is assigned a specific color. Students will play the role of RNA, making a copy of the DNA message (sequence of flashing colors) to synthesize a short polypeptide chain. Adenine (A) = Green;

- \circ Thymine (T) = Yellow;
- Cytosine (C) = Blue;
- Guanine (G) = Red.

<u>Central Dogma of Life</u>

p educators of the gineering design g schedule served o two–weeks

g and everyone is ervision and I, electrical and

	•/	<u>^</u>		y = 42.876x - 7.6116 R ² = 0.9911
*				 Series1 Linear (Series1)
4	6	8	10	

Phosphate															
Group	a st		2 nd Base										3 rd		
	Base		U			c			Α			G		Unite	
		υυυ	000000	Phe	UCU	010000	Ser	UAU	100000	Tyr	UGU	110000	Cys	U	
		UUC	000001	Phe	UCC	010001	Ser	UAC	100001	Tyr	UGC	110001	Cys	с	
	0	UUA	000010	Leu	UCA	010010	Ser	UAA	100010	Stp	UGA	110010	Stp	Α	
		UUG	000011	Leu	UCG	010011	Ser	UAG	100011	Stp	UGG	110011	Trp	G	
		CUU	000100	Leu	CCU	010100	Pro	CAU	100100	His	CGU	110100	Arg	U	
	C	CUC	000101	Leu	CCC	010101	Pro	CAC	100101	His	CGC	110101	Arg	с	
	C	CUA	000110	Leu	CCA	010110	Pro	CAA	100110	Gln	CGA	110110	Arg	Α	
		CUG	000111	Leu	CCG	010111	Pro	CAG	100111	Gln	CGG	110111	Arg	G	
		AUU	001000	lle	ACU	011000	Thr	AAU	101000	Asn	AGU	111000	Ser	U	
		AUC	001001	lle	ACC	011001	Thr	AAC	101001	Asn	AGC	111001	Ser	С	
	^	AUA	001010	lle	ACA	011010	Thr	AAA	101010	Lys	AGA	111010	Arg	Α	
		AUG	001011	Met	ACG	011011	Thr	AAG	101011	Lys	AGG	111011	Arg	G	
		GUU	001100	Val	GCU	011100	Ala	GAU	101100	Asp	GGU	111100	Gly	U	
	6	GUC	001101	Val	GCC	011101	Ala	GAC	101101	Asp	GGC	111101	Gly	c	
	G	GUA	001110	Val	GCA	011110	Ala	GAA	101110	Glu	GGA	111110	Gly	Α	
		GUG	001111	Val	GCG	011111	Ala	GAG	101111	Glu	GGG	111111	Gly	G	

6-bit RNA Codon Chart. Image Source: Nemzer (2017)

Lesson Learned and Assumptions

- IoT assisted instruction helps bring relevance to daily teaching. - Terminology used to describe scientific concepts may be unfamiliar to teachers and students alike.

- Practicing algorithm may help improve critical thinking skills in students.

weak base/acid (0)?

The strategies below represent a suggestive list of implementation techniques that will guide content delivery in biology, provide opportunities in programming and help develop critical thinking skills in students. These have been selected for their high effect size in keeping students engaged as well as their impact on achievement and learning (Hattie, 2012). However, it must be understood that a progressive evaluation of these methods might indicate a need for modification if proven ineffective and insufficient at meeting the students' needs.

- Guided Inquiry:
 - provided)
- Gradual Release
 - Practice
- Collaborative Grouping:
- Differentiated Instructions: Days 2 and 3
 - Advanced Students: Write full program
- Formative Assessments:
- Immediate Feedback

Acknowledgments

RET Site: COMET Program, College of Engineering and Computer Science, University of Central Florida. This content was developed under National Science Foundation grant EEC-1611019.

Miller, K. R., Levine, J, S. Biology—Elevate Science Florida, Boston, Mass. – Pearson -2010. Nemzer, L. R. (2017). A binary representation of the genetic code. Biosystems 155, 10-19. ACT: the Artemis Comparison Tool.

- A multidisciplinary approach to teaching conceptual understanding of complex biology topics might help bridge the gap in student learning and achievement.

Thymine (00) Cytosine (01) Adenine (10)Guanine (11)

DNA Bases Algorithm: Is it a purine (0) or pyrimidine (1)? Is it a strong base/acid (1) or a

Implementation Strategy

• Teacher guides students through procedure (Written and verbal instructions

 \circ Teacher Model \rightarrow Whole Group Practice \rightarrow Collaborative Pair \rightarrow Independent

• Heterogeneous grouping of students for peer support and tutoring • Low and Intermediate Students: Complete missing part of the coding

• Daily bell work recap from previous lesson

• Day 2: Immediate response check with table of results

References