Delving into the Electrical Domain

Ronda Smucz
2017 Research Education for Teachers
Internet of Things
Apopka High School

Summary

Electronics are everywhere! They are in our computers and phones, but increasingly they are in many everyday objects too! They are in our thermostats, dishwashers, cars, TVs and perhaps soon they will be wearable. Students need to learn the physics behind this technology so they can understand the emerging job requirements for creating, manufacturing, and utilizing electronic technologies.

The sensors in mobile devices are often made with Micro Electro Mechanical Systems (MEMS). They are miniaturized versions of circuits that convert mechanical movement into the electrical domain via the piezoelectric effect. MEMS are so small that hundreds of MEMS can fit on a chip this size of a human fingernail.

Through the use of diodes, Boolean Logic (AND / OR) can be translated into the electrical domain. These Logic Gates are the building blocks to the memory in a computer. The Electricity Unit Plan will delve deeper into electricity to demonstrate its usefulness and prevalence in our society.

Cutting Edge Research Activities

Sarah Shahrani - a graduate student holds a MEMS chip in her hand.

Dr. Abdolvand adjusting the fingers of a MEMS probe in a vacuum chamber.

Finite Element Analysis program Comsol is used to look for vibrational nodes at the tethers of a piezo device.

My Research Activities

Notice how the charged electron moves down during tension and up during compression. The movement of electrons is what causes current. Squeezing and relaxing a crystal can cause an alternating current in the crystal.

By heating the piezo device and measuring the resonant frequency at various temperatures, we were able to document a relationship for Temperature vs. Frequency.

Raspberry Pi

Java Programming

Lessons Learned and Assumptions

Capacitors, piezoelectricity, semiconductors, and diodes are not normally taught in high school physics due to time constraints. This research experience has taught me that an understanding of the electrical domain is one of the most important things I can teach my students to prepare them for the design, manufacturing, and use of technology. Everything we own will most likely end up with a circuit in it. Further, resonance is a key concept that can be explored across multiple domains and is exploited to make modern sensors.

Acknowledgments

Special thanks to
Dr. Reza Abdolvand- my mentor and my source of inspiration
Sarah Shahrani - role model and continuous technical support
Jim Ebbert- master teacher and friend
Dr. Hyoung Jin Cho, Dr. Damla Turgut, Jim Ebbert- master teacher and friend
Jim Ebbert- master teacher and friend

References

learn.sparkfun.com

Sunshine State Science Standards

SC.912.P.10.1 Differentiate among the various forms of energy and recognize that they can be transformed from one form to others.
SC.912.P.10.13 - Relate the configuration of static charges to the electric field, electric force, electric potential, and electric potential energy.

Lesson Plan

My research included using a piezoelectric device to transfer energy from the mechanical domain to the electrical domain. Alternating pressure makes alternating current. A diode is made of a semiconducting material and is used to limit the current flow to one direction. Using Problem Based Learning strategies, the students will make and explain how a piezoelectric generator is used to make an LED flash.

Implementation Strategy

Cost about $2

Topics

- Energy
- Energy Transfer
- Coulomb's Law
- Piezoelectricity
- Capacitors
- Ohm's Law
- Kirchhoff Laws
- Semiconductors
- Diodes
- Piezo generator

Activities

Project 6- Turn a piezoelectric buzzer into a temperature sensor.

By heating the piezo device and measuring the resonant frequency at various temperatures, we were able to document a relationship for Temperature vs. Frequency.

Measuring the frequency bandwidth at half power (3db)

A high Q value or signal to noise ratio is desired. (High amplitude narrow bandwidth)

References

learn.sparkfun.com